Implementing engrams from a machine learning perspective: the relevance of a latent space

Authors: J Marco de Lucas

6 pages, 2 figures
License: CC BY-NC-ND 4.0

Abstract: In our previous work, we proposed that engrams in the brain could be biologically implemented as autoencoders over recurrent neural networks. These autoencoders would comprise basic excitatory/inhibitory motifs, with credit assignment deriving from a simple homeostatic criterion. This brief note examines the relevance of the latent space in these autoencoders. We consider the relationship between the dimensionality of these autoencoders and the complexity of the information being encoded. We discuss how observed differences between species in their connectome could be linked to their cognitive capacities. Finally, we link this analysis with a basic but often overlooked fact: human cognition is likely limited by our own brain structure. However, this limitation does not apply to machine learning systems, and we should be aware of the need to learn how to exploit this augmented vision of the nature.

Submitted to arXiv on 23 Jul. 2024

Explore the paper tree

Click on the tree nodes to be redirected to a given paper and access their summaries and virtual assistant

Also access our AI generated Summaries, or ask questions about this paper to our AI assistant.

Look for similar papers (in beta version)

By clicking on the button above, our algorithm will scan all papers in our database to find the closest based on the contents of the full papers and not just on metadata. Please note that it only works for papers that we have generated summaries for and you can rerun it from time to time to get a more accurate result while our database grows.