GaiaUnlimited: The old stellar disc of the Milky Way as traced by the Red Clump

Authors: Shourya Khanna, Jie Yu, Ronald Drimmel, Eloisa Poggio, Tristan Cantat-Gaudin, Alfred Castro-Ginard, Evgeny Kurbatov, Vasily Belokurov, Anthony Brown, Morgan Fouesneau, Andrew Casey, Hans-Walter Rix

arXiv: 2410.22036v1 - DOI (astro-ph.GA)
27 pages, submitted to A&A
License: CC BY 4.0

Abstract: We present an exploration of the Milky Way's structural parameters using an all-sky sample of RC giants to map the stellar density from the inner to the outer parts of the Galactic disc. These evolved giants are considered to be standard candles due to their low intrinsic variance in their absolute luminosities, allowing us to estimate their distances with reasonable confidence. We exploit all-sky photometry from the AllWISE mid-infrared survey and the Gaia survey, along with astrometry from Gaia Data Release 3 and recent 3D extinction maps, to develop a probabilistic scheme in order to select with high confidence \rc{}-like stars. Our curated catalogue contains about 10 million sources, for which we estimate photometric distances based on the WISE $W1$ photometry. We then derive the selection function for our sample, which is the combined selection function of sources with both \gaia{} and \allwise{} photometry. Using the distances and accounting for the full selection function of our observables, we are able to fit a two-disc, multi-parameter model to constrain the scale height (\hz{}), scale-length (\rd{}), flaring, and the relative mass ratios of the two disc components. We illustrate and verify our methodology using mock catalogues of \rc{} stars. We find that the \rc{} population is best described by a flared thin disc with scale length \rd{}=$3.56\pm0.32$ kpc and scale height at the Sun of \hzsun{}=$0.17\pm0.01$ kpc, and a shorter and thicker disc with \rd{}=$2.59\pm0.11$ kpc, \hzsun{}=$0.45\pm0.11$ kpc, with no flare. The thicker disc constitutes 64\% of the \rc{} stellar mass beyond 3 kpc, while the thin disk shows evidence of being warped beyond 9 kpc from the Galactic center. The residuals between the predicted number density of RC stars from our axisymmetric model and the measured counts show possible evidence of a two-armed spiral perturbation in the disc of the Milky Way.

Submitted to arXiv on 29 Oct. 2024

Explore the paper tree

Click on the tree nodes to be redirected to a given paper and access their summaries and virtual assistant

Also access our AI generated Summaries, or ask questions about this paper to our AI assistant.

Look for similar papers (in beta version)

By clicking on the button above, our algorithm will scan all papers in our database to find the closest based on the contents of the full papers and not just on metadata. Please note that it only works for papers that we have generated summaries for and you can rerun it from time to time to get a more accurate result while our database grows.