Leveraging Large Language Models for Effective and Explainable Multi-Agent Credit Assignment

Authors: Kartik Nagpal, Dayi Dong, Jean-Baptiste Bouvier, Negar Mehr

8 pages+Appendix, 6 Figures, AAMAS 2025
License: CC BY-NC-ND 4.0

Abstract: Recent work, spanning from autonomous vehicle coordination to in-space assembly, has shown the importance of learning collaborative behavior for enabling robots to achieve shared goals. A common approach for learning this cooperative behavior is to utilize the centralized-training decentralized-execution paradigm. However, this approach also introduces a new challenge: how do we evaluate the contributions of each agent's actions to the overall success or failure of the team. This credit assignment problem has remained open, and has been extensively studied in the Multi-Agent Reinforcement Learning literature. In fact, humans manually inspecting agent behavior often generate better credit evaluations than existing methods. We combine this observation with recent works which show Large Language Models demonstrate human-level performance at many pattern recognition tasks. Our key idea is to reformulate credit assignment to the two pattern recognition problems of sequence improvement and attribution, which motivates our novel LLM-MCA method. Our approach utilizes a centralized LLM reward-critic which numerically decomposes the environment reward based on the individualized contribution of each agent in the scenario. We then update the agents' policy networks based on this feedback. We also propose an extension LLM-TACA where our LLM critic performs explicit task assignment by passing an intermediary goal directly to each agent policy in the scenario. Both our methods far outperform the state-of-the-art on a variety of benchmarks, including Level-Based Foraging, Robotic Warehouse, and our new Spaceworld benchmark which incorporates collision-related safety constraints. As an artifact of our methods, we generate large trajectory datasets with each timestep annotated with per-agent reward information, as sampled from our LLM critics.

Submitted to arXiv on 24 Feb. 2025

Explore the paper tree

Click on the tree nodes to be redirected to a given paper and access their summaries and virtual assistant

Also access our AI generated Summaries, or ask questions about this paper to our AI assistant.

Look for similar papers (in beta version)

By clicking on the button above, our algorithm will scan all papers in our database to find the closest based on the contents of the full papers and not just on metadata. Please note that it only works for papers that we have generated summaries for and you can rerun it from time to time to get a more accurate result while our database grows.