DESI DR2 Results I: Baryon Acoustic Oscillations from the Lyman Alpha Forest

Authors: DESI Collaboration, M. Abdul Karim, J. Aguilar, S. Ahlen, C. Allende Prieto, O. Alves, A. Anand, U. Andrade, E. Armengaud, A. Aviles, S. Bailey, A. Bault, S. BenZvi, D. Bianchi, C. Blake, A. Brodzeller, D. Brooks, E. Buckley-Geer, E. Burtin, R. Calderon, R. Canning, A. Carnero Rosell, P. Carrilho, L. Casas, F. J. Castander, R. Cereskaite, M. Charles, E. Chaussidon, J. Chaves-Montero, D. Chebat, T. Claybaugh, S. Cole, A. P. Cooper, A. Cuceu, K. S. Dawson, R. de Belsunce, A. de la Macorra, A. de Mattia, N. Deiosso, J. Della Costa, A. Dey, B. Dey, Z. Ding, P. Doel, J. Edelstein, D. J. Eisenstein, W. Elbers, P. Fagrelius, K. Fanning, S. Ferraro, A. Font-Ribera, J. E. Forero-Romero, C. Garcia-Quintero, L. H. Garrison, E. Gaztañaga, H. Gil-Marín, S. Gontcho A Gontcho, A. X. Gonzalez-Morales, C. Gordon, D. Green, G. Gutierrez, J. Guy, C. Hahn, M. Herbold, H. K. Herrera-Alcantar, M. Ho, K. Honscheid, C. Howlett, D. Huterer, M. Ishak, S. Juneau, N. G. Karaçaylı, R. Kehoe, S. Kent, D. Kirkby, T. Kisner, F. -S. Kitaura, S. E. Koposov, A. Kremin, O. Lahav, C. Lamman, M. Landriau, D. Lang, J. Lasker, J. M. Le Goff, L. Le Guillou, A. Leauthaud, M. E. Levi, Q. Li, T. S. Li, K. Lodha, M. Lokken, C. Magneville, M. Manera, P. Martini, W. Matthewson, P. McDonald, A. Meisner, J. Mena-Fernández, R. Miquel, J. Moustakas, A. Muñoz-Gutiérrez, D. Muñoz-Santos, A. D. Myers, J. A. Newman, G. Niz, H. E. Noriega, E. Paillas, N. Palanque-Delabrouille, J. Pan, W. J. Percival, I. Pérez-Ràfols, M. M. Pieri, C. Poppett, F. Prada, D. Rabinowitz, A. Raichoor, C. Ramírez-Pérez, M. Rashkovetskyi, C. Ravoux, J. Rich, C. Rockosi, A. J. Ross, G. Rossi, V. Ruhlmann-Kleider, E. Sanchez, N. Sanders, S. Satyavolu, D. Schlegel, M. Schubnell, H. Seo, A. Shafieloo, R. Sharples, J. Silber, F. Sinigaglia, D. Sprayberry, T. Tan, G. Tarlé, P. Taylor, W. Turner, F. Valdes, M. Vargas-Magaña, M. Walther, B. A. Weaver, M. Wolfson, C. Yèche, P. Zarrouk, R. Zhou, H. Zou

arXiv: 2503.14739v1 - DOI (astro-ph.CO)
This DESI Collaboration Publication is part of the Data Release 2 publication series (see https://data.desi.lbl.gov/doc/papers )
License: CC BY 4.0

Abstract: We present the Baryon Acoustic Oscillation (BAO) measurements with the Lyman-alpha (LyA) forest from the second data release (DR2) of the Dark Energy Spectroscopic Instrument (DESI) survey. Our BAO measurements include both the auto-correlation of the LyA forest absorption observed in the spectra of high-redshift quasars and the cross-correlation of the absorption with the quasar positions. The total sample size is approximately a factor of two larger than the DR1 dataset, with forest measurements in over 820,000 quasar spectra and the positions of over 1.2 million quasars. We describe several significant improvements to our analysis in this paper, and two supporting papers describe improvements to the synthetic datasets that we use for validation and how we identify damped LyA absorbers. Our main result is that we have measured the BAO scale with a statistical precision of 1.1% along and 1.3% transverse to the line of sight, for a combined precision of 0.65% on the isotropic BAO scale at $z_{eff} = 2.33$. This excellent precision, combined with recent theoretical studies of the BAO shift due to nonlinear growth, motivated us to include a systematic error term in LyA BAO analysis for the first time. We measure the ratios $D_H(z_{eff})/r_d = 8.632 \pm 0.098 \pm 0.026$ and $D_M(z_{eff})/r_d = 38.99 \pm 0.52 \pm 0.12$, where $D_H = c/H(z)$ is the Hubble distance, $D_M$ is the transverse comoving distance, $r_d$ is the sound horizon at the drag epoch, and we quote both the statistical and the theoretical systematic uncertainty. The companion paper presents the BAO measurements at lower redshifts from the same dataset and the cosmological interpretation.

Submitted to arXiv on 18 Mar. 2025

Explore the paper tree

Click on the tree nodes to be redirected to a given paper and access their summaries and virtual assistant

Also access our AI generated Summaries, or ask questions about this paper to our AI assistant.

Look for similar papers (in beta version)

By clicking on the button above, our algorithm will scan all papers in our database to find the closest based on the contents of the full papers and not just on metadata. Please note that it only works for papers that we have generated summaries for and you can rerun it from time to time to get a more accurate result while our database grows.