Critical Thinking: Which Kinds of Complexity Govern Optimal Reasoning Length?

Authors: Celine Lee, Alexander M. Rush, Keyon Vafa

License: CC BY 4.0

Abstract: Large language models (LLMs) often benefit from verbalized reasoning at inference time, but it remains unclear which aspects of task difficulty these extra reasoning tokens address. To investigate this question, we formalize a framework using deterministic finite automata (DFAs). DFAs offer a formalism through which we can characterize task complexity through measurable properties such as run length (number of reasoning steps required) and state-space size (decision complexity). We first show that across different tasks and models of different sizes and training paradigms, there exists an optimal amount of reasoning tokens such that the probability of producing a correct solution is maximized. We then investigate which properties of complexity govern this critical length: we find that task instances with longer corresponding underlying DFA runs (i.e. demand greater latent state-tracking requirements) correlate with longer reasoning lengths, but, surprisingly, that DFA size (i.e. state-space complexity) does not. We then demonstrate an implication of these findings: being able to predict the optimal number of reasoning tokens for new problems and filtering out non-optimal length answers results in consistent accuracy improvements.

Submitted to arXiv on 02 Apr. 2025

Explore the paper tree

Click on the tree nodes to be redirected to a given paper and access their summaries and virtual assistant

Also access our AI generated Summaries, or ask questions about this paper to our AI assistant.

Look for similar papers (in beta version)

By clicking on the button above, our algorithm will scan all papers in our database to find the closest based on the contents of the full papers and not just on metadata. Please note that it only works for papers that we have generated summaries for and you can rerun it from time to time to get a more accurate result while our database grows.