Procedural Memory Is Not All You Need: Bridging Cognitive Gaps in LLM-Based Agents
Authors: Schaun Wheeler, Olivier Jeunen
Abstract: Large Language Models (LLMs) represent a landmark achievement in Artificial Intelligence (AI), demonstrating unprecedented proficiency in procedural tasks such as text generation, code completion, and conversational coherence. These capabilities stem from their architecture, which mirrors human procedural memory -- the brain's ability to automate repetitive, pattern-driven tasks through practice. However, as LLMs are increasingly deployed in real-world applications, it becomes impossible to ignore their limitations operating in complex, unpredictable environments. This paper argues that LLMs, while transformative, are fundamentally constrained by their reliance on procedural memory. To create agents capable of navigating ``wicked'' learning environments -- where rules shift, feedback is ambiguous, and novelty is the norm -- we must augment LLMs with semantic memory and associative learning systems. By adopting a modular architecture that decouples these cognitive functions, we can bridge the gap between narrow procedural expertise and the adaptive intelligence required for real-world problem-solving.
Explore the paper tree
Click on the tree nodes to be redirected to a given paper and access their summaries and virtual assistant
Look for similar papers (in beta version)
By clicking on the button above, our algorithm will scan all papers in our database to find the closest based on the contents of the full papers and not just on metadata. Please note that it only works for papers that we have generated summaries for and you can rerun it from time to time to get a more accurate result while our database grows.