TRiSM for Agentic AI: A Review of Trust, Risk, and Security Management in LLM-based Agentic Multi-Agent Systems

Authors: Shaina Raza, Ranjan Sapkota, Manoj Karkee, Christos Emmanouilidis

License: CC BY 4.0

Abstract: Agentic AI systems, built upon large language models (LLMs) and deployed in multi-agent configurations, are redefining intelligence, autonomy, collaboration, and decision-making across enterprise and societal domains. This review presents a structured analysis of \textbf{Trust, Risk, and Security Management (TRiSM)} in the context of LLM-based Agentic Multi-Agent Systems (AMAS). We begin by examining the conceptual foundations of Agentic AI and highlight its architectural distinctions from traditional AI agents. We then adapt and extend the AI TRiSM framework for Agentic AI, structured around four key pillars: Governance, Explainability, ModelOps, and Privacy/Security , each contextualized to the challenges of multi-agent LLM systems. A novel risk taxonomy is proposed to capture the unique threats and vulnerabilities of Agentic AI, ranging from coordination failures to prompt-based adversarial manipulation. To support practical assessment in Agentic AI works, we introduce two novel metrics: the Component Synergy Score (CSS), which quantifies the quality of inter-agent collaboration, and the Tool Utilization Efficacy (TUE), which evaluates the efficiency of tool use within agent workflows. We further discuss strategies for improving explainability in Agentic AI , as well as approaches to enhancing security and privacy through encryption, adversarial robustness, and regulatory compliance. The review concludes with a research roadmap for the responsible development and deployment of Agentic AI, outlining critical directions to align emerging systems with TRiSM principles for safe, transparent, and accountable operation.

Submitted to arXiv on 04 Jun. 2025

Explore the paper tree

Click on the tree nodes to be redirected to a given paper and access their summaries and virtual assistant

Also access our AI generated Summaries, or ask questions about this paper to our AI assistant.

Look for similar papers (in beta version)

By clicking on the button above, our algorithm will scan all papers in our database to find the closest based on the contents of the full papers and not just on metadata. Please note that it only works for papers that we have generated summaries for and you can rerun it from time to time to get a more accurate result while our database grows.