Vertex and front-tracking methods for the modeling of microstructure evolution at the solid state: a brief review

Authors: Marc Bernacki

arXiv: 2510.21818v1 - DOI (cond-mat.mtrl-sci)
License: CC BY 4.0

Abstract: In mesoscopic scale microstructure evolution modeling, two primary numerical frameworks are used: Front-Capturing (FC) and Front-Tracking (FT) ones. FC models, like phase-field or level-set methods, indirectly define interfaces by tracking field variable changes. On the contrary, FT models explicitly define interfaces using interconnected segments or surfaces. In historical FT methodologies, Vertex models were first developed and consider the description of the evolution of polygonal structures in terms of the motion of points where multiple boundaries meet. Globally, FT-type approaches, often associated with Lagrangian movement, enhance spatial resolution in 3D surfacic and 2D lineic problems using techniques derived from finite element meshing and remeshing algorithms. These efficient approaches, by nature, are well adapted to physical mechanisms correlated to interface properties and geometries. They also face challenges in managing complex topological events, especially in 3D. However, recent advances highlight their potential in computational efficiency and analysis of mobility and energy properties, with possible applications in intragranular phenomena.

Submitted to arXiv on 21 Oct. 2025

Explore the paper tree

Click on the tree nodes to be redirected to a given paper and access their summaries and virtual assistant

Also access our AI generated Summaries, or ask questions about this paper to our AI assistant.

Look for similar papers (in beta version)

By clicking on the button above, our algorithm will scan all papers in our database to find the closest based on the contents of the full papers and not just on metadata. Please note that it only works for papers that we have generated summaries for and you can rerun it from time to time to get a more accurate result while our database grows.