Neutrino pair annihilation above merger remnants: implications of a long-lived massive neutron star
Auteurs : Albino Perego, Hannah Yasin, Almudena Arcones
Résumé : Binary neutron star mergers are plausible progenitor candidates for short gamma-ray bursts (GRBs); however, a detailed explanation of their central engine is still lacking. The annihilation of neutrino pairs has been proposed as one of the possible powering mechanisms. We present calculations of the energy and momentum deposition operated by neutrino pair annihilation above merger remnants. Starting from the results of a detailed, three-dimensional simulation of the aftermath of a binary neutron star merger, we compute the deposition rates over a time scale comparable to the life time of the disk ($t \approx 0.4$ s), assuming a long-lived massive neutron star (MNS). We model neutrino emission using a spectral leakage scheme and compute the neutrino annihilation rates using a ray-tracing algorithm. We find that the presence of the MNS increases the energy deposition rate by a factor $\sim 2$, mainly due to the annihilation of radiation coming from the MNS with radiation coming from the disk. We compute the impact of relativistic effects and discover that, despite they can significantly change the local rate intensity, the volume-integrated results are only marginally decreased. The cumulative deposited energy, extrapolated to 1 sec, is $\approx 2.2 \times 10^{49} \, {\rm erg}$. A comparison with the inferred short GRB energetics reveals that in most cases this energy is not large enough, even assuming small jet opening angles and a long-lived MNS. Significantly more intense neutrino luminosities (a factor ~5-10 larger) are required to explain most of the observed short GRB. We conclude that it is unlikely that neutrino pair annihilation can explain the central engine of short GRBs alone.
Explorez l'arbre d'article
Cliquez sur les nœuds de l'arborescence pour être redirigé vers un article donné et accéder à leurs résumés et assistant virtuel
Recherchez des articles similaires (en version bêta)
En cliquant sur le bouton ci-dessus, notre algorithme analysera tous les articles de notre base de données pour trouver le plus proche en fonction du contenu des articles complets et pas seulement des métadonnées. Veuillez noter que cela ne fonctionne que pour les articles pour lesquels nous avons généré des résumés et que vous pouvez le réexécuter de temps en temps pour obtenir un résultat plus précis pendant que notre base de données s'agrandit.