Make Skeleton-based Action Recognition Model Smaller, Faster and Better

Auteurs : Fan Yang, Sakriani Sakti, Yang Wu, Satoshi Nakamura

6 pages, 5 figures

Résumé : Although skeleton-based action recognition has achieved great success in recent years, most of the existing methods may suffer from a large model size and slow execution speed. To alleviate this issue, we analyze skeleton sequence properties to propose a Double-feature Double-motion Network (DD-Net) for skeleton-based action recognition. By using a lightweight network structure (i.e.,~ 0.15 million parameters), DD-Net can reach a super fast speed, as 3,500 FPS on one GPU, or, 2,000 FPS on one CPU. By employing robust features, DD-Net achieves the state-of-the-art performance on our experiment datasets: SHREC (i.e.,~ hand actions) and JHMDB (i.e.,~body actions). Our code will be released with this paper later.

Soumis à arXiv le 23 Jul. 2019

Explorez l'arbre d'article

Cliquez sur les nœuds de l'arborescence pour être redirigé vers un article donné et accéder à leurs résumés et assistant virtuel

Accédez également à nos Résumés, ou posez des questions sur cet article à notre Assistant IA.

Recherchez des articles similaires (en version bêta)

En cliquant sur le bouton ci-dessus, notre algorithme analysera tous les articles de notre base de données pour trouver le plus proche en fonction du contenu des articles complets et pas seulement des métadonnées. Veuillez noter que cela ne fonctionne que pour les articles pour lesquels nous avons généré des résumés et que vous pouvez le réexécuter de temps en temps pour obtenir un résultat plus précis pendant que notre base de données s'agrandit.