On the detectability of strong lensing in near-infrared surveys
Auteurs : Philip Holloway, Aprajita Verma, Philip J. Marshall, Anupreeta More, Matthias Tecza
Résumé : We present new lensing frequency estimates for existing and forthcoming deep near-infrared surveys, including those from JWST and VISTA. The estimates are based on the JAdes extraGalactic Ultradeep Artificial Realisations (JAGUAR) galaxy catalogue accounting for the full photometry and morphologies for each galaxy. Due to the limited area of the JAGUAR simulations, they are less suited to wide-area surveys, however we also present extrapolations to the surveys carried out by Euclid and the Nancy Grace Roman Space Telescope. The methodology does not make assumptions on the nature of the lens itself and probes a wide range of lens masses. The lenses and sources are selected from the same catalogue and extend the analysis from the visible bands into the near-infrared. After generating realistic simulated lensed sources and selecting those that are detectable with SNR>20, we verify the lensing frequency expectations against published lens samples selected in the visible, finding them to be broadly consistent. We find that JWST could yield ~ 65 lensed systems in COSMOS-Web, of which ~ 25 per cent have source redshifts >4. Deeper, narrower programs (e.g. JADES-Medium) will probe more typical source galaxies (in flux and mass) but will find fewer systems (~ 25). Of the surveys we investigate, we find 55-80 per cent have detectable multiple imaging. Forthcoming NIR surveys will likely reveal new and diverse strong lens systems including lensed sources that are at higher redshift (JWST) and dustier, more massive and older (Euclid NISP) than those typically detected in the corresponding visible surveys.
Explorez l'arbre d'article
Cliquez sur les nœuds de l'arborescence pour être redirigé vers un article donné et accéder à leurs résumés et assistant virtuel
Recherchez des articles similaires (en version bêta)
En cliquant sur le bouton ci-dessus, notre algorithme analysera tous les articles de notre base de données pour trouver le plus proche en fonction du contenu des articles complets et pas seulement des métadonnées. Veuillez noter que cela ne fonctionne que pour les articles pour lesquels nous avons généré des résumés et que vous pouvez le réexécuter de temps en temps pour obtenir un résultat plus précis pendant que notre base de données s'agrandit.